
CSC 413 Exercises - Week 9 Shkurti / Gilitschenski

Exercise 1 - Dot-Product Attention

You are given a set of vectors

h1 = (1, 2, 3)⊤, h2 = (1, 2, 1)⊤, h3 = (0, 1, −1)⊤

and an alignment source vector s = (1, 2, 1)⊤. Compute the resulting dot-product attention weights 𝛼𝑖 for
𝑖 = 1, 2, 3 and the resulting context vector c.

Solution

First we compute the dot products between 𝑠 and the ℎ𝑖 and apply softmax resulting in:

𝑎 = Softmax ⎛⎜⎜
⎝

⎛⎜
⎝

1 1 0
2 2 1
3 1 −1

⎞⎟
⎠

⊤

⋅ ⎛⎜
⎝

1
2
1
⎞⎟
⎠

⎞⎟⎟
⎠

≈ ⎛⎜
⎝

0.88
0.12
0.00

⎞⎟
⎠

The resulting context vector is then computed as a weighted sum of the ℎ𝑖:

𝑐 = 𝑎1ℎ1 + 𝑎2ℎ2 + 𝑎3ℎ3 ≈ ⎛⎜
⎝

1.00
2.00
2.76

⎞⎟
⎠

A simple implementation yielding the solution is as follows:

import torch
h = torch.tensor([[1, 2, 3], [1,2,1], [0,1,-1]])
s = torch.tensor([1,2,1])
a = torch.matmul(h,s).float()
a = torch.exp(a)/torch.sum(torch.exp(a)) # Softmax
c = a[0] * h[0] + a[1] * h[1] + a[2] * h[2]
print(c)

Exercise 2 - Attention in Transformers

Transformers use a scaled dot product attention mechanism given by

𝐶 = attention(𝑄, 𝐾, 𝑉 ) = softmax (𝑄𝐾⊤
√

𝑑
) 𝑉 ,

where 𝑄 ∈ ℝ𝑛𝑞×𝑑𝑘 , 𝐾 ∈ ℝ𝑛𝑘×𝑑𝑘 , 𝑉 ∈ ℝ𝑛𝑘×𝑑𝑣 .

(a) Is the softmax function here applied row-wise or column-wise? What is the shape of the result?

(b) What is the value of 𝑑? Why is it needed?

(c) What is the computational complexity of this attention mechanism? How many additions and multi-
plications are required? Assume the canonical matrix multiplcation and not counting exp(𝑥) towards
computational cost.

(d) In the masked variant of the module, a masking matrix is added before the softmax function is
applied. What are its values and its shape? For simplicity, assume 𝑛𝑞 = 𝑛𝑘.

1



CSC 413 Exercises - Week 9 Shkurti / Gilitschenski

Solution

(a) The softmax function is applied row-wise and the shape of the result is 𝑛𝑞 × 𝑛𝑘. One way to see
this is by looking at the shape of the dot product 𝑄𝐾⊤ which is 𝑛𝑞 × 𝑛𝑘. Each row represents the
pre-softmax scores of all keys and a given query. Because we need to normalize our attention weights
per query, the normalization happens along the rows.

(b) The value of 𝑑 is 𝑑𝑘. It is needed to scale the dot product so that the gradient of the softmax function
does not vanish.

(c) To obtain the computational complexity, let’s look at all the operations individually:

• 𝑄𝐾⊤ requires 𝑛𝑞𝑛𝑘𝑑𝑘 multiplications and 𝑛𝑞𝑛𝑘(𝑑𝑘 − 1) additions.
• Dividing by √𝑑𝑘 needs to be carried out 𝑛𝑞𝑛𝑘 times.
• Applying the softmax function can be implemented in 𝑛𝑞𝑛𝑘 divisions and 𝑛𝑞(𝑛𝑘 − 1) additions.
• The final matrix multiplication requires 𝑛𝑞𝑑𝑣𝑛𝑘 multiplications and 𝑛𝑞𝑑𝑣(𝑛𝑘 − 1) additions.

(d) The masking matrix is a triangular matrix with −∞ on its top right half. This results in softmax
weights being 0 for all key-query combinations to which −∞ is added.

Exercise 3 - Scaled Dot-Product Attention by Hand

Consider the matrices 𝑄, 𝐾, 𝑉 given by

𝑄 = [1 2
3 1] , 𝐾 = ⎡⎢

⎣

2 1
1 1
0 1

⎤⎥
⎦

, 𝑉 = ⎡⎢
⎣

1 2 −2
1 1 2
0 1 −1

⎤⎥
⎦

.

Compute the context matrix 𝐶 using the scaled dot product attention.

Solution

The resulting context matrix is given by:

𝐶 ≈ (0.86 1.58 −0.72
0.99 1.88 −1.56)

A simple implementation would look as follows:

import torch
Q = torch.tensor([[1, 2], [3, 1]]).float()
K = torch.tensor([[2, 1], [1, 1], [0, 1]]).float()
V = torch.tensor([[1, 2, -2], [1, 1, 2], [0, 1, -1]]).float()
d_k = torch.tensor(K.shape[1])
M = torch.matmul(Q, K.transpose(0, 1)) / torch.sqrt(d_k)
S = torch.exp(M) / torch.sum(torch.exp(M), dim=1).view(-1,1)
torch.matmul(S, V)

Pytorch also provides a function for scaled dot product attention:

2



CSC 413 Exercises - Week 9 Shkurti / Gilitschenski

import torch.nn.functional as F
F.scaled_dot_product_attention(Q, K, V)

3


	Exercise 1 - Dot-Product Attention
	Solution

	Exercise 2 - Attention in Transformers
	Solution

	Exercise 3 - Scaled Dot-Product Attention by Hand
	Solution


