CSC413 Exercises - Week 9 Shkurti / Gilitschenski

Exercise 1 - Dot-Product Attention

You are given a set of vectors
h, =(1,2,3)", hy,=(1,2,1)", hy=(0,1,—-1)"

and an alignment source vector s = (1,2,1)". Compute the resulting dot-product attention weights «; for
i1 =1,2,3 and the resulting context vector c.

Solution

First we compute the dot products between s and the h; and apply softmax resulting in:

11 0\ /1 0.88
a = Softmax 2 2 1 -1 2 ~ | 0.12
3 1 —1 1 0.00

The resulting context vector is then computed as a weighted sum of the h;:

1.00
2.76

A simple implementation yielding the solution is as follows:

import torch

h = torch.tensor([[1, 2, 3], [1,2,1], [0,1,-11]1)

s = torch.tensor([1,2,1])

a = torch.matmul (h,s).float()

a = torch.exp(a)/torch.sum(torch.exp(a)) # Softmax
c = al0] * h[0] + al[1] * h[1] + a[2] * h[2]
print(c)

Exercise 2 - Attention in Transformers

Transformers use a scaled dot product attention mechanism given by

C = attention(Q, K, V') = softma (QKT> Vv
= ntion(Q, K, V') = softmax )
Vd

where Q € R"*% K € R™>d V€ RMexdo,
(a) Is the softmax function here applied row-wise or column-wise? What is the shape of the result?
(b) What is the value of d? Why is it needed?

(¢c) What is the computational complexity of this attention mechanism? How many additions and multi-
plications are required? Assume the canonical matrix multiplcation and not counting exp(x) towards
computational cost.

(d) In the masked variant of the module, a masking matrix is added before the softmax function is
applied. What are its values and its shape? For simplicity, assume n, = ny.



CSC413 Exercises - Week 9 Shkurti / Gilitschenski

Solution

(a) The softmax function is applied row-wise and the shape of the result is n, x n;. One way to see
this is by looking at the shape of the dot product QKT which is ng X ny. Each row represents the
pre-softmax scores of all keys and a given query. Because we need to normalize our attention weights
per query, the normalization happens along the rows.

b) The value of d is d,,. It is needed to scale the dot product so that the gradient of the softmax function
k
does not vanish.

(c¢) To obtain the computational complexity, let’s look at all the operations individually:

« QKT requires n, n;d;, multiplications and n,n,(d;, — 1) additions.

« Dividing by @ needs to be carried out n n; times.

« Applying the softmax function can be implemented in n,n,, divisions and n,(n, — 1) additions.
e The final matrix multiplication requires n,d,n, multiplications and n,d,(n, — 1) additions.

(d) The masking matrix is a triangular matrix with —oo on its top right half. This results in softmax
weights being 0 for all key-query combinations to which —oo is added.

Exercise 3 - Scaled Dot-Product Attention by Hand

Consider the matrices @), K, V given by

1 2 2 1 1 2 -2
01 01 —1

Compute the context matrix C' using the scaled dot product attention.

Solution

The resulting context matrix is given by:

O~ 0.86 1.58 —0.72
~ 1099 1.8 —1.56

A simple implementation would look as follows:

import torch

Q = torch.tensor([[1, 2], [3, 1]]).float()

K = torch.temnsor([[2, 1], [1, 1], [0, 11]).float()

V = torch.tensor([[1, 2, -2], [1, 1, 2], [0, 1, -1]1]).float()
d_k = torch.tensor(K.shape[1])

M = torch.matmul(Q, K.transpose(0, 1)) / torch.sqrt(d_k)

S = torch.exp(M) / torch.sum(torch.exp(M), dim=1).view(-1,1)
torch.matmul(S, V)

Pytorch also provides a function for scaled dot product attention:



CSC413 Exercises - Week 9 Shkurti / Gilitschenski

import torch.nn.functional as F
F.scaled_dot_product_attention(Q, K, V)



	Exercise 1 - Dot-Product Attention
	Solution

	Exercise 2 - Attention in Transformers
	Solution

	Exercise 3 - Scaled Dot-Product Attention by Hand
	Solution


