
CSC 413 Exercises - Week 10 Shkurti / Gilitschenski

Exercise 1 - Transposed Convolution Output Sizes

What is the size of the output for a input tensor and a transposed convolutional layer if the parameters
are given as follows (assume the number of channels is given in the first dimension).

(a) Input tensor size: 3 × 2 × 2
Transposed convolution: 3 × 3 kernel, stride 1, output channels: 2

(b) Input tensor size: 3 × 5 × 5
Transposed convolutional: 2 × 2 kernel, stride 2, output channels: 4

(c) Input tensor size: 𝑐𝑖𝑛 × ℎ × 𝑤
Transposed convolutional: 3 × 3 kernel, stride 2, output channels: 2

(d) Input tensor size: 𝑐𝑖𝑛 × ℎ × 𝑤
Transposed convolutional: ℎ𝑘 × 𝑤𝑘 kernel, stride 𝑠, output channels: 𝑐𝑜𝑢𝑡

Solution

(a) Output tensor size: 2 × 4 × 4
(b) Output tensor size: 4 × 10 × 10
(c) The first dimension is always the number of input channels, i.e. 𝑐𝑜𝑢𝑡. The output for the first value of

the input tensor is of size 3 × 3. For all remaining values, the stride determines the additional values
of the ouput. Stride 2 means, that we need two values for each additional value. Thus, the output
height ℎ𝑜𝑢𝑡 and width are 𝑤𝑜𝑢𝑡:

ℎ𝑜𝑢𝑡 = 3 + (ℎ − 1) ⋅ 2 = 2ℎ + 1
𝑤𝑜𝑢𝑡 = 3 + (𝑤 − 1) ⋅ 2 = 2𝑤 + 1

Thus, the resulting size is 2 × (2ℎ + 1) × (2𝑤 + 1).
(d) This generalization requires a similar consideration and we can basically reuse the equations from

above:
ℎ𝑜𝑢𝑡 = ℎ𝑘 + (ℎ − 1) ⋅ 𝑠
𝑤𝑜𝑢𝑡 = 𝑤𝑘 + (𝑤 − 1) ⋅ 𝑠

Exercise 2 - Transposed Convolution Parameter Sizes

What is the number of learnable parameters for each of the following transposed convolution layers defined
in PyTorch. Try to calculate those by hand first and use pytorch later to verify your results.

(a) nn.ConvTranspose2d(in_channels=3, out_channels=2, kernel_size=3, stride=1)

(b) nn.ConvTranspose2d(in_channels=3, out_channels=10, kernel_size=3, stride=2)

(c) nn.ConvTranspose2d(in_channels=3, out_channels=2, kernel_size=4, stride=5)

(d) nn.ConvTranspose2d(in_channels=3, out_channels=4, kernel_size=3, stride=23)

1

CSC 413 Exercises - Week 10 Shkurti / Gilitschenski

Solution

The number of parameters is the product of input channels, output channels and kernel size. For each
output channel, there is one bias parameter (if bias=True which is default in PyTorch). The stride does
not matter for the number of paramters.

(a) 3 ⋅ 2 ⋅ 9 + 2 = 56
(b) 3 ⋅ 10 ⋅ 9 + 10 = 280
(c) 3 ⋅ 2 ⋅ 16 + 2 = 98
(d) 3 ⋅ 4 ⋅ 9 + 4 = 112

Exercise 3 - Transposed Convolution by Hand

You are given an input matrix 𝑋 (consisting of a single channel) and a kernel 𝐾 as follows:

𝑋 = ⎛⎜
⎝

1 0 2
2 3 0

−1 0 3
⎞⎟
⎠

, 𝐾 = (1 0
1 2)

(a) Compute the transposed convolution by hand assuming stride 2.

(b) Compute the transposed convolution by hand assuming stride 1.

(c) Use PyTorch to verify your answers.

(d) Implement the transposed convolution in PyTorch without using its own implementaiton. You can
assume no bias term a square kernel and no separate batch dimension. I.e. your task is to implement
the following function

def conv_transpose2d(inp, weight, stride=1):
inp - input of shape (C_in, H, W)
weight - kernel of shape (C_in, C_out, K, K)
stride - stride of the transposed convolution
RETURNS
output - output of shape (C_out, H_out, W_out)
#
YOUR CODE HERE
return output

Solution

(a) The resulting output tensor is of shape 6 × 6 and is given by:

𝑌 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

1 0 0 0 2 0
1 2 0 0 2 4
2 0 3 0 0 0
2 4 3 6 0 0

−1 0 0 0 3 0
−1 −2 0 0 3 6

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

2

CSC 413 Exercises - Week 10 Shkurti / Gilitschenski

(b) The resulting output tensor is of shape 4 × 4 and is given by:

𝑌 =
⎛⎜⎜⎜⎜
⎝

1 0 2 0
3 5 2 4
1 7 9 0

−1 −2 3 6

⎞⎟⎟⎟⎟
⎠

(c) We can verify our answers with PyTorch with the following commands:
nn.functional.conv_transpose2d(X.unsqueeze(0), K, stride=2)

nn.functional.conv_transpose2d(X.unsqueeze(0), K)

The call to .unsqueeze(0) can be left out if X has a batch dimension and is already a 4D tensor.

(d) A potential implementaiton (that isn’t optimized in any way) of transposed convolutions looks like
this:

def conv_transpose2d(input, weight, stride=1):
input - input of shape (C_in, H, W)
weight - kernel of shape (C_in, C_out, K, K)
stride - stride of the transposed convolutio
RETURNS
output - output of shape (C_out, H_out, W_out)
(c_in, h_in, w_in) = X.size()
(c2_in, c_out, k, k2) = K.size()

assert c_in == c2_in, "Number of input channels must match"
assert k == k2, "Kernel must be square"

h_out = (h_in - 1) * stride + k
w_out = (w_in - 1) * stride + k
output = torch.zeros((c_out, h_out, w_out))

for c_cur_in in range(c_in):
for c_cur_out in range(c_out):

for h in range(0, h_in):
for w in range(0, w_in):
output[c_cur_out, h*stride:h*stride+k, w*stride:w*stride+k] \

+= weight[c_cur_in, c_cur_out,:,:] * input[c_cur_in,h,w]

return output

3

	Exercise 1 - Transposed Convolution Output Sizes
	Solution

	Exercise 2 - Transposed Convolution Parameter Sizes
	Solution

	Exercise 3 - Transposed Convolution by Hand
	Solution

