Exercise 1 - Eigenvalues and Eigenvectors
You are given the following set of eigevalues and eigenvectors. Compute the corresponding matrix.
\(\la_1 = 1\), \(\la_2 = 2\), \(\fv_1 = (\sqrt{0.5}, \sqrt{0.5})^\top\), \(\fv_2 = (\sqrt{0.5},-\sqrt{0.5})^\top\).
Exercise 2 - Parameter Counting
Use PyTorch to load the alexnet
model and automatically compute its number of parameters. Output the number of parameters for each layer and the total number of parameters in the model.
Exercise 3 - Convolutional Layers
Consider the following \(4\times 4 \times 1\) input X and a \(2\times 2 \times 1\) convolutional kernel K with no bias term
\[ X = \bpmat 1 & 0 & 1 & -1 \\ 1 & 0 & 1 & 0 \\ 0 & 3 & 0 & 1 \\ 1 & -1 & 0 & 1 \epmat, \qquad % K = \bpmat 1, & 2 \\ 0, & 1 \\ \epmat \]
What is the output of the convolutional layer for the case of stride 1 and no padding?
What if we have stride 2 and no padding?
What if we have stride 2 and zero-padding of size 1?
Exercise 4 - Scaled Dot-Product Attention
Consider the matrices \(Q\), \(K\), \(V\) given by \[ Q = \bpmat 1 & 3\\ 0 & 1 \epmat,\quad K = \bpmat 1 & 1\\ 1 & 2\\ 0 & 1 \epmat,\quad V=\bpmat 1 & 0 & -2\\ 2 & 1 & 2 \\ 0 & 3 & -1 \epmat. \] Compute the context matrix \(C\) using the scaled dot product attention.